9 research outputs found

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Simulated signatures of Greenland melting in the North Atlantic: A model comparison with Argo floats, satellite observations, and ocean reanalysis

    Get PDF
    Increased Greenland ice sheet melting has an impact on global mean and regional sea level rise and the ocean circulation. In this study, we explore whether Greenland melting signatures found in ocean model simulations are visible in observations from radar altimetry, satellite gravimetry and Argo floats. We have included Greenland freshwater flux (GF) in the global Finite-Element-Sea ice-Ocean Model (FESOM) for the years 1993–2016. The reference run is computed by excluding Greenland freshwater input. These experiments are performed on a low resolution (ca. 24 km) and a high resolution (ca. 6 km) eddy-permitting mesh. For comparison with the model experiments, we use different observational data, such as Argo floats, satellite observations, and reanalyses. We find that surface GF maps into signatures in temperature and salinity down to about 100 m in the surroundings of Greenland. The simulated melting signatures are particularly visible in steric heights in Baffin Bay and Davis Strait. Here, we find an improvement of the mean square error of up to 30% when including GF. For the Nordic part of the Nordic Seas, however, we find no improvement when including GF. We compare steric heights with reanalysis data and a new setup of the inversion method from gravimetric and altimetric satellite data. We cannot confirm that the GF signatures on variables such as temperature and salinity are visible in the observations on the time scales considered. However, we find that increased model resolution often causes larger improvements than occur due to including the simulated melting effect

    Niger discharge from radar altimetry: bridging gaps between gauge and altimetry time series

    No full text
    The Niger River represents a challenging target for deriving discharge from spaceborne radar altimeter measurements, particularly since most terrestrial gauges ceased to provide data during the 2000s. Here, we propose deriving altimetric rating curves by “bridging” gaps between time series from gauge and altimeter measurements using hydrological model simulations. We show that classical pulse-limited altimetry (Jason-1 and Jason-2, Envisat, and SARAL/Altika) subsequently reproduces discharge well and enables continuing the gauge time series, albeit at a lower temporal resolution. Also, synthetic aperture radar (SAR) altimetry picks up the signal measured by earlier altimeters quite well and allows the building of extended time series of higher quality. However, radar retracking is necessary for pulse-limited altimetry and needs to be further investigated for SAR. Moreover, forcing data for calibrating and running the hydrological models must be chosen carefully. Furthermore, stage–discharge relations must be fitted empirically and may need to allow for break points

    Breaking down Global and Regional Sea Level Budgets: what Satellite Observations can tell us

    No full text
    A thorough understanding of sea level rise requires the quantification of the underlying drivers. Using satellite gravimetry and radar altimetry we can split up the global mean sea level budget into components induced by mass changes (e.g. melting and water cycle variations) and volumetric changes (thermo and halosteric variations). But, is this also possible in terms of regional sea level budgets? Furthermore, can we resolve for even smaller contributions, such as, individual ice sheets, glacier groups, and dominant modes of terrestrial hydrology, and steric variations? In this study, we use satellite gravimetry from GRACE and radar altimetry from Jason-1 and Jason-2 to break down the sea level budgets on both global and regional scales over the years 2002-2014. Auxiliary data from hydrological and ocean models are used to create time invariant patterns which are scaled by time series which are estimated from the data. The inversion scheme, ensures that the sea level budget closes in a consistent way, respecting geometry and mass conservation. The solution is then evaluated in terms of sea level rise and its variation. To investigate the contribution of the deeper ocean, we subtract an independent steric estimate (top 700m, ARGO) from the estimated steric contribution. In contrast to other studies, we find a significant deep ocean steric component below 700m in the order of 1.2 mm/yr over the years considered
    corecore